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FOREWORD

The work performed under NASA grant NGR-33-018-01Y4 covered a wide range of
subjects which are coupled by the common theme of dual control. Dual
control is the problem of optimal control of a process under the condition
of incomplete information. Consequently, the problems of identification,
adaptation, and sensitivity of optimal control systems were investigated.
The final report for this grant was divided into five separate reports.
The four other reports are as follows:

Error Correcting Learning Models (N68-23599 - NASA CR-94583)

Sensitivity Design Technique (N68-19267 ~ NASA CR-93527)

Bending Frequency Identification (Saturn Booster)
With a Digital Cocherent Memory Filter (N67-39228 - CR-89319)

Pulse Rate Adaptive Threshold Logic Units (NASA CR-1035)
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Adaptive Simlation Using Modal Clustering

Formilation of Problem

The subject of this report is the formulation of an input-output procesé
model using only the process operating record. The processes considered are
those which have a finite settling time. Other than a knowledge of the pro-
cess settling time and the process operating record, no other information is
available. The structure of the process is not known, thus nonlinear and
linear processes fall within the class of processes studied.

Since the process structure is unknown, there is no procedure for obtain-
ing the process parameters and the process nonlinearities (if any). Conse-
quently, an exact model of the process canﬁot be obtained. However, an
input-output model can be obta.ined,l such that given a particular input the
process output can be found. A model of this type can be searched in fast
time for use in a predictive control system.2

In addition, it 1s desirable that such a model be able to adapt to process
changes. Since the process parameters are not monitored, the overall cause-
effect relationship of the model must change, based only on the on-line
operating record of the process.

Another viewpoint, and one which will be taken in this report, is that
what is actually desired is an inverse model, one which portrays the output-
input relationship of the process. A model of this type can be searched in
fast time to obtain the input information required to guide the process through

a desired output path.



In summary, the model which is obtained protrays the output-input causal
relationship of a process with finite settling time. It is assumed that the
only information which is available is the process settling time and the
normal process operating record. Consequently, the identification is on-line

with the model adapting to process changes.

Process Identification and Pattern Recognition

The problem of modeling a finite settling time process on an input-output
(or ocutput-input) basis can be viewed as a problem in pattern recognition. If
the settling time of the process is Ts’ then the input x(T) from Z =t - Z%
to Z° =t uniquely determines the output y(t) at time t. The input can
be viewed as a two dimensional pattern on an amplitude-time coordinate system.
Alternatively, if the input is sampled at N points during the process settling
time then the input can be represented by.a point in Euclidean N-dimensional
pattern space. The output y(t) can be viewed as a point in one dimensional
space, the real line. Thus, the process represents a transformation or
mapping from the N-dimensional input pattern space onto the real line. For
a linear process the transformation is linear, for a nonlinear process the
transformation is nonlinear. Pattern recognition is the process whereby a
point in pattern space is mapped onto a discrete axis of categories. For
example, many handwritten 2's are mapped into a single point "2" on the
category axis. Similarly, many process input patterns can be mapped into a
unique y(t) on the real axis. If the process output y(t) is guantized
into R output levels, then the mapping is onto a discrete category axis of
R categories. The problem of pattern recognition and of process identifi-

cation is to determine the transformation process whereby input patterns are



mapped onto the category axis. PFurthermore, process identification seeks to
determine the inverse transformation whereby a given output point can be
mapped. into many input patterns.

Since the art of pattern recognition has progressed to the stage where
it is a usable tool, it seems natural to apply these techniques to the problem
of process identification. Pattern recognition represents a particularly
useful and powerful technique in the area of control systems. The control
field is just realizing the importance of this approach, and investigations
are presently being undertaken in the aﬁplication of pattern recognition to

3,0

decision making control systems.

Category Determination

A convenient way of handling the input past is represent it in terms of
an orthonormal expansion. A particularly useful set of orthonormal functions
are the cardinal functions. The use of these functions enables the input to

be represented in terms of the sample values of the input x(t), x(t-T),...

x Ec - (n-1)T ;(n-l)T = T_. Thus,
x(t - T, 8) = ) x,(6) @(t) (1)
i=1

where xi(t) = x(t - (i-1)T)

0,(t) = 2w Sigﬂ%“‘gt(f ET%}?)T) W= ;—T

Consequently, the input past from *+ - TS to t can be viewed as a
point (or vector) in an n dimensional orthogonal coordinate space. This space

is called pattern space. Each coordinate in pattern space represents a
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different time sample of the input. This vector can be written as
() = cob (x(8), xy(6),eeemy(8), 0 nsx (£))

where
xi(t) = x(t ~ (i~-1)T)

X(t) = input pattern

Since the input pattern X represents the time samples of x(t) during
the input past, this representaﬁion remains unchanged between time samples.
Consequently, the output of the process model remains unchanged between time
samples. Hence the output of the process model looks like a series of steps,
changing in value only at the sampling times. The height of the step at each
sample time is determined on the basis of minimum mean square distance between
the output of the process and the output of the model.

Let (Zj/zj) = output of the model given the particular input vector_zj.

During the time that zj is present Zj is a constant.

y(t) = process output

The mean sguare distance between the process output and the model output is

given by

P = (5(8) - 2,/507 = v7(8) - 2(y(e) 5,/%,) + (2,°/x) (2)

This distance is a minimum when

ol

2D _ 5 - .
5z~ = 0= - GOEVE) + (2,/%,)

J
or

(23/%3) = (VKD (3)
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Thus the model output should be equal to the average value of the process
output when the particular input pattern appears. Since the output of the
model is limited to R categories, the correct category is chosen by finding

the quantization level of the average process output.

R,
J

1

correct model category = Qp I:yi'b 57}_CJ:] (%)

where

It

quantization operator of R quantization levels

)

Mode Learning Machine

The preceding section described the procedure whereby a given input
pattern is assigned to a particular category. This is only part of the problem,
equivalent to observing a 1list of patterns and their correct categorization.
It would be inconceivable to construct a model which listed all possible input
patterns and their associated categories. Consequently, some form of decision
surface between patterns in pattern space must be constructed. These surfaces
divide pattern space into regions such that known samples in a category are
enclosed within a surface or region, and all other samples are excluded from
this region. Theoretically, these surfaces can be constructed if the con-
ditional probability density functions of each category are known. Using
decision theoretic methods, the correct categories are then chosen on the

p

basis of likelihood ratios. Complicating the problem of constructing these

surfaces is the requirement that the machine must learn in real time.
Consequently, analytic methods of determining these surfaces are out of

the question. The computations and memory capacity required are too great

to consider a true likelihood computer. Analytic methods for approximating

the conditional probability densities are available, however investigation



has shown that the learning and computation time required preclude even these
analytic approximations.6 Therefore nonanalytic methods must be used to

obtain these separating surfaces. These surfaces must be obtained in real
time, using each new patitern sample to correct the shape of the surface. This
requirement requires a compromise between the desired decision theoretic
approach and the practical considerations of simplicity and computational speed.

Since the class of processes include both linear and nonlinear processes,
certain simple techniques such as linear decision functions or multilayered
linear decision functions cannot be employed. However, the class of pattern
recognition machines known as "modal machines" can be employed. It will now
be shown that machines in this class approach the desired likelihood computers,
yet maintain the advantages of simplicity and computational ease.

Consider the case of two category pattern recognition. A minimum distance
classifier would assign a category to the input pattern based upon its proximity
to the nearest known member of a class. The locus of points equidistant from
the nearest members of the two classes forms the decision boundary. This is
shown in Figure 1. The decision rule 1s then

XeRr if min|2_(-_)_L_Lm|< minl}_(—_)_CEKl (5)

zim = mﬁh sample of class Rl

_ th
zéK = K sample of class R2
X = input pattern

Note that this procedure is valid no matter what the shapes of the regions
which contain samples. Thus, classification is possible when samples of a

given class occupy several disjointed regions, as shown in Figure 1. If the



class of decision functions were limited to hyperplane boundaries, perfect
class separation would not be possible.

This classification procedure has certain shortcomings. The most serious
of these shortcomings is the sensitivity to stray class samples. A stray
sample (due possibly to a noisy measurement) falling within an incorrect class
boundary can cause numerous classification errors. Consequently, it is
advantageous to modify this procedure such that, instead of looking for the
sample nearest the input pattern point, a local majority rule is used. A
local majority decision procedure first examines all samples within a radius
r of the input pattern and counfs the number of samples of each category
that lie within this radius. The correct category is chosen to be that
category which has the maximum number of samples within this radius. Essen-
tially, this procedure is measuring local conditional probability, and is

7

sometimes referred to as the Fix and Hodges procedure.

5

A modification of
this procedure,” which weights the distance from the pattern to the stored

samples, is given by

gi(z) = discriminant function of ilh category. (6)
i
_Z 1
B (.)_{".}_(m k
m=1l |1 + )
T

where
Ni = number of samples of category i within a radius
r of pattern X

mth sample of category 1

k = exponent which determines how pattern mismatches are
weighted. Effectively k determines the slope of a
filter about the point X



The category to which pattern X is classified is that category with the
largest discriminant function. Sinee this procedure is a form of a weighted
likelihood computer, decisions rendered by such a technique approach Bayes
decisions.

Unfortunately, this technique suffers from the disadvantage that it
requires the storage of the entire learning or sample set. A reduction in
the storage requirements can be accomplished if, instead of the entire sample
set being stored, certain "representative" samples were stored. These repre-
sentative samples can be obtained by clustering the points in the sample set.
The center of each cluster is the best approximate for that population of
sample points. If a new pattern point is received which is within a certain
distance of the representative point, then it is assigned to that cluster
and the representative point modified. Figure 2 shows how a given sample
set is approximated by a union of circles. The region is then approximated
by the center of the cirecles, with a weighting factor which indicates how
many samples were contained in the cluster. These clusters can be termed
"modes" of a given category. The use of these modes eases the storage re-
quirements and simplifies the computational problems, since only the modes
are stored and compared with the input pattern. A machine which clusters
the input patterns and uses only modal information to effect decision making

is known as a ''modal machine".

Decision Making

The basic decision to be made is "given the input pattern X, which
category Ri is most likely". This can be transformed into an examination

of the conditional probability distribution P(Ri/g). Using the modal



approximation of the category regions,

My

P(R..) P, (X)
R(x/R,) B(R;) le 2 M
BBy /%) = ) il P(X) (0

where

M

N number of modes of category 1

jth mode of category i

Ri,j

Pp (X) = conditional probability density of mode Rij
ij

Since P(}_() is common for all categories, category decisions can be

made by comparing

M.
i

! =

P'(R;/X) Z N5 PRi.(?-‘) (8)
=1 J

where
N.. = number of samples in mode R..
1J 1J

The probability density function P (_}_{) is not known, but it can be approx-
imated by a knowledge of the clusteriﬂg procedure. The circles shown in
Figure 2 are assumed to be eq_uipro:oable contours of Gaussian processes which
have equal variances in all dimensions and uncorrelated variables. The

probability density Pp (X) 4is then given by

1j
(x-P ) (x-2.)
l — _lJ Juind _lJ
U S 9
PRij(}_c) (\/2x o)V ( o g-? (9)



where
N = number of dimensions
o“:2 = variance of the mode
gij = mean of the mode, referred to as the prototype point

of the mode

Notice that if the input pattern X 1s close to a prototype point, all
but a few terms vanish in Eq. (9). Thus, Eq. (8) is a measure of the number
of samples of category i which are near X, weighted according to their
distances from X. Hence, this type of decision approximates likelihood ratio
decisions.

Alternatively, for the assumptions* made in Eg. (9), a simpler type of
decision making6 can be used. This decision procedure is a minimum distance
classification based upon distances to the prototype points. The basis for

this decision making is to find that category for which

T
(x -, ) (X - By))

is a minimum.
Expanding this distance measure

T = .
(K - -:E:LJ) (2.(- - _E:,_J) =X.X-2 -E:LJ p.¢ +-:Eij Eij

Equivalently, the minimum distance classification within a given category can

be performed by comparing the sub-discriminant functions

-%_lj..-P Jg=1, 2, ..., M, (10)

g5(X) =X - By 1 Eij 1

Mi = number of modes in category i

*The additional assumption, which may be implied from the other assumptions, is
that the population of each mode is equal. This assumption is not required for this

procedure, but illustrates that decisions made by both methods can be made identical.

10



The largest sub-discriminant function corresponds to the mode (within category
i) which is closest to pattern X. The correct category is obtained by com-

paring the discriminait functions

| 1 .
= max M{}—C'Eij_§2ij -ljij} i=1,2,...,R (11)

and selecting the largest. The largest of the R discriminant functions is
associated with the correct category. A simplified block diagram of this type

of learning machine model is shown in Figure 3.

Adaptive Modal Construction

The problem of on-line construction of the modes (prototypes) of each
category is handled in the following manner. The first pattern received be-
longing to a particular category is assigned as the first mode of that
category and given a weight of one. The second pattern received belonging to
that category is tested to see if it lies within a given radius (distance) of
the first pattern. If it does, then it is clustered with that pattern by
averaging, and a weight of two 1is assigned to the averaged pattern. If the
second pattern falls outside of the given radius, then it is assigned as the
second mode of that category. Successive patterns are treated in the same
manner, clustering the patterns within a given radius so that the prototype
pattern (mode) represents the center of gravity of the clustered patterns.
The distance between each mode and the new pattern must be found to determine
whether the new pattern should be clustered, and with which mode it is to be

clustered.

11



Given a memory which can store M modes, the assignment of the maximum
number of modes for each category raises an interesting point. The simplest
solution would be to preassign to each category -% modes, where R is the
number of categories. However, this assumption of uniform modal distribution
is generally not valid, although it may produce acceptable error rates.
Ideally, the number of modes assigned to each category should be chosen based
upon the distribution of patterns in each category. Since the modal distri-
bution is unknown, the assignment of modes must be made on an adaptive basis.
One procedure would be to assign the incoming patterns to their respective
categories, tagging each mode with the correct category. This procedure would
continue until the allowed memory space was filled. In addition, a minimum
number of modes could be assigned to each category.

The principal problem arises when the memory is filled. How should the
M + lst pattern be handled if it is not within the clustering radius? Con-
ceivably, if this pattern is averaged with the nearest mode in the same
category. Alternmatively, the resultant mode might move the original mode
away from the desired surface and closer to the inside of the category region.
Therefore, once the memory is filled, averaging modes to allow for more memory
space should be approached with considerable care. The new mode must be
tested to see if it lies within the given category, and if it lies outside
the clustering radius of any other mode. This testing of averaged modes
requires a good deal of computer time, and the additional refinement of the
separating surfaces must be weighed against the cost of the refinement. If
the initial M modes fairly adequately represent the category surfaces,

restricting the learning procedure to averaging only within the mode clustering

12



radius may be the best possible procedure. Additional input patterns which
lie outside of any clustering radius are considered as stray patterns and
are discarded.

There are several other ways in which clustering can be achieved,s’7
however this study used the simplest techniques, to evaluate the orders of
magnitude achievable by use of a learning machine. A flow diagram of the
simple uniform clustering procedure is shown in Figure L.

The similarity between this method and the method of Potential Functions8’9
should be noted. The method of Potential Functions can be viewed as either
T

a generalization of a éémachine or as a generalization of a modal machine.

8,9

In fact, Aizerman gives two learning algorithms, one for each viewpoint
or learning machine structure. The convergence proofs for these algorithms
are also given. Consequently, the method used in this report can be con-
sidered to be a special case of the method of Potential Functions.

Since the purpose of this report is to illustrate how pattern recognition
techniques can be used for process identification, a convergence proof for
this particular form of learning machine is not included. Convergence is
assured by the convergence of the general case. A similar study of process

identification using the general form of the Potential Function forms the

second half of this report.

Test Results
The modal learning technique was applied to a wide range of systems, both
linear and nonlinear. The more important results and implications will be

reported here, with the plant of Figure 5 used as an example. The input to

13



the plant was exponentially correlated (e = .T07), zero mean, Gaussian noise.
The input pattern to the model consisted of ten sample points, taken over a
five second settling time, unless otherwise noted. Results are listed in

Tables I-IV. A typical output is shown in Fig. 6.

I. Uniform Prototype Model

The uniform prototype model sets aside an equal number of prototypes for
each quantization category. The results of using this type of model indicated
that:

1. For ¢ = 0.5 and 40 quantization levels, there is very little
difference between using five and ten prototypes per quantization
category. There is also very little difference between center of
gravity clustering and non-center of gravity clustering. The rms
error over 100 settling times varied between .030 and .039. The
lower error was obtained for 10 prototypes, center of gravity
clustering and a tolerance (radius about each prototype) of 2.0.
Since a quantization interval was .025, this can be considered to
be good identification, the model output being slightly higher than
one quantization interval.

2. The identification time, although not shown in the tables, appeared
to be within 10 settling times of the system. This is not an
adequate measure since identification time in such a system is a
function of the degree to which the input probes the allowed pattern
space. Consequently the identification is a function of the input

statistics. For the zero mean Gaussian noise the exponential

14



correlation ( e = .707) provides what is seemingly rapid identifi-
cation. This apparently good identification is caused by the fact
that the last input pattern is closely related to the present input
pattern. Consequently the present output will be closely related
to the previous correctly tagged input. If the input were purely
random, Jjumping throughout pattern space, this would not be the
case. Tﬁe use of exponentially correlated noise is justified on
the basis of a closer match with actual signal conditions.

When the input variance is increased to 0.75 the mean square error
increased markedly. Increasing the number of categories and in-
creasing the number of taps decreased the error by about one-half.
The principle fault in these tests was that the output range was not
correspondingly increased with the input variance. Clearly, changing
the input varlance will change the output dynamic range. This was
not accounted for in these tests. However this does point out the
shortcoming of this type of identification. For a nonlinear system
the entire pattern space must be probed, which requires a great deal
of computer time. Equivalently, an increase in the input variance
corresponds to a decrease in the number of categories or fineness of
identification.

Use of a non-zero tolerance (radius of clustering) factor reduces
the error. There is an optimum clustering radius beyond which the
error increases. However this is not a sharply defined radius, as

the error increases slowly after the optimum radius is exceeded.
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IT. Nonuniform Mode Distribution

This distribution is determined by the manner in which the input patterns

are sequentially allocated to each category. A minimum of two prototypes per

category are allowed, otherwise the number of prototypes per category are

determined by the actual distribution.

1.

For 0 = 0.50 there appears to be a threshold effect in the number
of categories selected. Above 50 categories (below q = .02) there
is not any noticeable decrease in the MSE. In one case an exponential
"forgetting” function was applied to the input, and in another case
the input was quantized. There did not appear to be any noticeasble
changes for these cases. Identification was within 2 quantization
levels.

For ¢ = 0.75 there was a decrease in MSE for an increase in the
number of prototypes, but not a significant decrease. Consequently
most of the tests were made with the lower number of prototypes.
Interesting the output range was varied from 1 to 10 without any
significant difference in the MSE.

Again, there is a combination of tolerance, range, and number of
prototypes which yields a minimum MSE. There is also a unique value
of system settling time which gives a minimum MSE. The order of
magnitude of the MSE is largely a function of the input wvariance.
The input variance describes the space over which the input patterns
occur, the larger the variance the greater the nonlinear range which
mist be described by a fixed number of prototypes.

It is indeed interesting to note that the nonuniform distribution was
not any more successful than the uniform distribution. The reason

for this is described in the Conclusions Section.
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Conclusions

The purpose of this study was to determine the usefulness of mode seeking
pattern recognition techniques in obtaining adaptive models of nonlinear
processes. This study has shown that such a simulation can be successful.
Héwever the specific form of this type of solution maps the entire input space
by a set of clustered input points, each cluster belonging to an output
quantization level. As such, not only the boundaries between output levels
are determined but also the entire space within the boundaries. This is an
inefficient use of the memory allocation, as is borne out by the increase in
MSE ag the input variance is increased. A more appropriate mode seeking
technigue would be one which cleared the inside of a region, leaving only
those modes which are required to determine the boundaries between output
levels. This is a much more difficult procedure than simply storing and
clustering the patterns belonging to a particular class. However it should
be possible to construct such boundaries by use of a polynomial decision

surface which are derivable from the stored cluster patterns.
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Uniform Mode Distribution

Table I

4o eategories, Range = 1.0, q = .025
o= 0.5
10 Time Points

Settling Time = 5 seconds

PROT/CAT CLUST TOLERANCE . | MSE

5. Non C.G 0 .039

10 Non C.G 0 .03k

10 Cc.G 0 .037

10 Cc.G 2.0 .030

Table II
o = 0.75 Range = 1.0

PROT/CAT | No. CAT a CLUST ST TAPS TOL. MSE
10 ko .025 Non C.G| 5 10 0 .16k
5 80 .0125 C.G 5 10 0 .203
10 50 .02 Cc.g 5 10 0 .103
10 50 .02 Non C.G| 5 10 0 .148
10 100 .01 c.¢ 5 10 0 .106
10 100 .01l C.G 5 20 0 .090
10 1.00 .OL c.G 5 20 2.0 LO7L
10 100 .0L C.G 5 20 10 .125
10 100 Noil c.c¢ 10 20 0 Ak
10 100 .01 c.g 10 10 0 .163
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Nonuniform Mode Distribution

Center of Gravity Clustering

Ten equelly spaced input time points

Table IITI
0 = 0.5 No. of Prototypes = 500 Settling Time = 5 sec.
No. of Categories Output Range q Tolerance MSE Comments

25 10 0.4 1.0 .067

50 1.0 .02 1.0 Nol'h R

50 1.0 .02 0.66 .040 Forgetting

75 1.0 .013 0.66 .02

T5 1.0 .013 0.66 .038 Input quantized

100 1.0 .0L 1.0 .01

Table IV
= 0.75
No. PROT ’ No. CAT Range q Settling Time Tolerance MSE Comments
500 100 10 0.1 5 .01 .189
1000 100 10 0.1 5 .01l .162 |[Increased No. Prot
500 100 1 0L 5 1.0 .209
1000 100 1 .01 5 1.0 .202 |Decreased Range
500 100 10 0.1 5 1.0 L1
500 100 10 0.1 5 5.0 274 |Increased Tol.
500 100 1 .01 T 1.0 24
500 100 1 Noil 10 1.0 .30k | Increased Settling
Time
500 100 1 .01 3 1.0 .113 | Decreased Settling
Time

500 100 1 .01 i 1.0 .150
500 25 3 0.120 5 1.0 .139
500 25 3 0.120 5 1.0 .130 | Forgetting
500 25 3 0.120 5 1.0 .146 | Quantized Input
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ADAPTIVE SIMULATION BY

THE METHOD OF POTENTIAL FUNCTIONS

Introduction

The Method of Potential Functions was first announced by Aizerman
et al in 1964, and elaborated on by these same investigators in
two subsequent papers, (1, 2, 3). Several Russian investigators
have applied the method to some optical character recognition
problems (&4, 5, 8, 12), but no work seems to have been done on
applying the method to the problem of adaptive simulations. In the

discussion to follow, and in the investigations reported in a

following section only the basic algorithm is considered.

The chief value of the Method of Potential Functions is two-

fold.
1. It represents per se an algorithm which may be of consider-
able value in pattern recognition probltems;
2. It demonstrates an analogy between modal learning tech-

niques and éﬁ-machine techniques which generalize many of
the results for learning in linear machines to modal machines.
The Method of Potential Functions will now be discussed. First,
a general description of the method will be presented, followed by
the method of realizing the algorithm. Next Aizerman's proof of
the convergence of the algorithm for the two category case will be

extended to R categories.
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Consider an M-dimensional pattern space X. Without loss of
generality, this space may be assumed to be Euclidian; and hence,
to possess a metric, an inner product, and, in general, all prop~
erties associated.witﬁ a Euclidian space. In particular, if x & X
is a vector in X, then one may define an orthonormal set of scalar
functions [$i(x), 1=1,2,3,---].

Now suppose X is partitioned into two disjoint category sub-

sets, X, and X,. Then the discriminant function1{r(;) may be

A B
represented by a general

oo
Y (x) = lZ_l ci4>‘,(§>. (1)

The principle assumption of the method of potential functions
is that this infinite sum may be adaquately represented by a
finite sum. N

1{f(x)--Zc,cwi ) (2)
i=1

Some intuitive justification of the principle assumption is
required, We note that it often happens that in the functions of
physics, a truncated Fourier series may approximate closely the
original function, perhaps with some "ripple''. In general, the
separating surface Is not necessarily unique; hence, we may
consider the Truncated Fourier Series to be some "rippled’ approxi-
mation to some "'optimum'' separating surface.

The work of Cooper (6) and Sebestyan (10) are of particular
interest, Cooper shows that quadric and linear surfaces are al-
ready optimum for a wide class of probability distributions. For
example, Cooper shows that the hyperplane is optimal for ''two

unimodal distributions differing only in location and having
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probability density functions which are ellipsoidally symmetric
and monotonically decreasing away from the mean '';while the hyper-
sphere is optimal when the two distributions are ''spherically
symetric normél with different variances''. The lmpllcatloﬁs here
are not that these statistics may be known a priori, for if they
were, parametric procedures would be far more appropriate. Rather,
the point is that one might be justified in taking a small number
of terms in any real physical problem. This is further supported
by Sebestyan's results, cited above, page 68ff,

Consider a mapping of M-dimensional space X in some N-dimensional
space Z defined as follows: let x = (%l’ ----- ,xm) be a point in X,
Then the image Z6 2 of xis given by!

z, = P, (x), 1=1,--==,N (&)
and z = (z',----,zN). Hence the separating surface given by (1) may

be seen to map Into a hyperplane In Z.
N

Y@ - Z c,z, (5)
=]
Z is termed the Linearization Space of x.
Hence, for N such that (2) holds, (2) and (4) map an arbitrary
separating surface‘l’(;) in pattern space into a linear separating
surface in Z, Let /—’- (/’l,----./N) be the parameters of the separat-

ing hyperplane in.Z. Then (f z 4§ Z Is the Image of X & X, the dichot~
omy - N >0, X& Xa

¥& - }: P ® o xex O
)
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Is expressed by a correlation 30,75 2

Y (2) =z, P _ (7)

<0, 26 2

The Potential Function

Let x, y &% and let u, v & Z be the images of X and y under the

mapping (4). Define the potential function K (x,y).

N
KED = D 2P, 0P, m»  ®

=]
It is clear that the potential function Is the image in X of the
correlation (u, v) in 2. The basic idea of the method of potential
functions is that the separating hyperplane 7>in linearization space
can be approximated in terms of a potential function in pattern space.
Prototype points are learned by the machine, and these prototype points

serve as the representations In pattern space of the parameters /:,----

.

Algorithm
First Method

The potential function K (x, y) is chosen. For example, two likely
functions are of the form AdT + B ,’Y'JV,lf]and A exp.(-B,‘iJVIIZ) where
ll ll indicates the norm defined on X-space. As a practical matter, the
norm may be taken to be Euclidean distance.

The algorithm (first method) is defined by induction, as follows:
the first point X appears and the potential function Is defined as

KC;,xl), x6 X'

11’1 G = | (9)
“K(x,x ), % & X,
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Now, assume ﬂ?r(i) is defined. Let the point riad appear. Then 4
cases exist:
Jr+i —=r+l
a) X ax‘,‘{’r ™ yo
o X ex Y™ ¢ o

d) ir+l : xz,w}rr(xr-ﬂ) > 0

Then Kr+l7(;l is defined as

Tr(;)’ a) and b) j.e., no error
¥, - ¥ o™, )
¥ co-k&xx™h, d) (10)

After r steps, the potential function may be written in the form
¥, G- E K(x,x®) — E K(x,x%) (1)
x® 28 xqt—;x2
The prime on the summation means that only those (;s & XI) and

(iq &Xz) are taken which caused the preceding potential function to

be in error. As a matter of terminology, the sets (X° E Xl) and

(Yq E Xz) may be termed; respectively, the positive and negative poles

associated with category X'.
It is clear that in this algorjthm these poles must be stored

during the learning period. As r-»>co, the function 1?r(;) should

converge to the separation function Q?(;), so that as learning progresses,

fewer poles will be added to storage.
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Equation (11) may be restated more compactly in terms of the
adjusted training set SQ, Let SQ - (;], Xy « . .) be the set of
training pattern vectors which were misclassified by the potential

function. The Pole weight factor associated with member of the adjusted

training set is denoted by’G‘J and is defined as

A
+}, xJ & X]
j - .stsQ

-1, xj & X2

Hence,cﬂj-+l for positive poles, and °<j = 4} for negative poles.

Then equation (11) may be written as:

N
r
A A
X) = K(x,x,), x. & SA 1
T & D=ty Kxxp), ;@ s (13)

j=

The first algorithm is then seen to be a modal technique, with

the poles, which are seen to be the members of the adjusted training

set SQ, corresponding to prototype points. This number, Nr’ cannot, in

general, be computed a priori. This is a drawback in the method, since

clearly, the amount of computer memory required to carry out the algorithm

is directly proportional to Nr' in simulation experiments carried out
employing this technique, methods arbitrarily constraining Nr were

attempted, with generally satisfactory results.

Extension of the Algorithm to the R-Category Case,

The Potential Function ldentifier is proposed as an adaptive model
for non-linear systems. The patterns to be classified are sets of time
samples of the input, while the categories are defined by quantizing the
output signal into R levels, Several schemes for extending the algorithm

are now suggested,
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Absolute learning scheme.

R potential functlons are defined. During learning, when x”’l &

r+1 (xr-l

(1evel j) appears, each functlong?' ) Is corrected so that

€0, i+ j

T i r+l (x”")

70, i=]

puring identification, if convergence were complete, for each-x that
appears, one and only one of the R potential functions would be positive
and all of the others would be negative. The positive function would be
selected as that corresponding to the desired quantization level. As a
matter of practice, such a condition could not in general be expected.
In the case where several potential functions were positive, the most
reasonable choice might be the maximum.

Maximum Learning Scheme.

In this technique, it is not required that the appropriate potential
function be positive while all others be negative; only that the
appropriate potential function be greater than any other. Hence,
during learning when xr+é “evel j)appears, the maximum potential

function is calculated

ForE mex (F(F,)
i=1,R

Then if k=j, (i.e., no error), no correction is made, while if k¥j, a
positive correction is made for i?j and a negative-correction is made
for i?k' A1l other potential functions are left uncorrected. In terms
of the First Algorithm, the assumption is that this will result in fewer
poles being stored. During identification, when x appeafs. the maximum
v j(x) is selected as corresponding to the desired category.
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One final remark may be made concerning both the absolute and
maximum techniques. If, during identification, a point x appears
such that none of the i?i(x) are positive, this situation may be
considered to be an error., In this case, no decision is made, and
the last estimate, for lack of any better criterion is retained.

Convergence of the Algorithm.

One of the powerful aspects of the Method of Potential Functions
is that it is a highly general modal technique whose convergence
properties are well understood. The proof of Aizerman et al is given
for the two category case. |t is necessary to extend this proof to
the multi-category case. In this report, Aizerman's Theorem will be
stated without proof, primarily for purposes of reference; likewise,
theorems which extend the result will be stated and discussed briefly;
but no rigorous proof will be given,

Aizerman's Theorem for the two category is stated as follows:
Thm. In pattern. space X, let the functlon‘y(;), x& X separate x

into two subsets, X, and XB such that

A

>E,'>Zs Xa

¥ &
{ -6 x&Xx; , €0

and let 4?(;) be representable in the form of equation (2). Let S,
be an arbitrary infinite sequence of points in x, (;|,§2,---4§k,----).
Let the function K(x,x) be bounded in x.

Then, there exists some integer M , independent of the choice of
Sx' such that the number of correlated errors does not exceed M.

This states that the algorithm converges in a finite number of
steps. However, it is noted that this upper bound M is not a priori.

calculable. The implications of this are discussed below,
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Extension to the Multi-Category Case,

Let there be defined in pattern space R subsets, Xl, XZ----,XR.
Assume that these subsets are disjoint, and define the training set

X to be the union of these category subsets:

R
x= (J X ) (1)

=1

Then, R distinct discriminant functions'g?i(;), i=) ,R are defined
and each associated with one of the R category sets,

The conditions for separability may now be stated precisely: The

set of category subsets XI,-----XR are separable in the Absolute sense

(or absolutely separable) by the function set i?l(;),---- i?rC;) if and

only if v 0, %5 X
? H (;) ’ j"n"""’R (]5)

The set category subsets X',----.Xr are separable in the maximum sense

(maximally separable) if and only if
'?‘J.(§)>‘I'i(§),§exj;i,j=-1,----R;i+j (16)
Now, it is clear that any set of categories which is absolutely
separable is necessarily maximally separable.
Analogously, these criterla can be stated in linearization space.
I,----,Zr be the mappings of the sets Xl,----xr, respectively.

Then, if )’3 is the solution weight vector corresponding to

Let Z

g?.i (x), then absolute separability yields
_ 0, z & Z
Y °-; v J = 1,====,R (17)
b0 28z
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and maximal separability yields

rj . zrr, -z, all z&ZJ.; i, j = l,---,R.j i+ ]
These conditions, of course, represent linear separability in Z -space.
Then the extension of the convergence proof fhrough the multi=~
category follows in a straight-forward manner. Rather than state these

results formally as theorems, the results will simply be discussed.

(18)

For the Absolute scheme, one recognizes that R categories are partitioned

by R-1 discriminant functions, Hence, this method may be thought of as

R-1 2-category separations carried out in parallel, according to equation

(15). Hence, the result follows immediately.

For the Maximum scheme, the convergence result is extended by
noting that in linearization space, the algorithm reduces to fixed~
increment linear training procedure. The Nilsson-Kesler Theorem,

(10, p. 87) may be adapted directly to extend the result. For details,
see reference.

Simulation of the Systems

Three systems were employed; these were a 2-dimensional system, a
first order nonlinear system, and a second order system with saturation,
These are now described.

Two-Dimensional Delay System

The equation for the Two-Dimensional Delay system is
y(t) = x(t) - x(e-T). (19)
This trivial system was employed precisely for the reason that the
output is completely specified by only two taps on a delay line.
Hence, pattern space may be taken as two-dimensional, and the actual

and computed discriminant surfaces displayed.
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T
x(t) /C

The output was quantized into 5 levels such that

Yo = -5
Y, = -3
Y, = -
Y, = 1
Yy = 3
Y5 = 5 (20)

Let the axes of pattern space be designated by m]=-x(t), m2=x(t-T).
Then the equations for the discriminant lines are

m = m - Y,i=1,2,3, b, (21)

Since the input x(t) is gaussian, the distribution of pattern
points Z = (m],mz) in pattern space is given by a bivariate gaussian
distribution., The distributions of m, and m, were such that m, and m,
have zero mean and identical @™ . Hence, the equiprobabilistic contours
are sketched in the pattern plane according to

M]2 -ZFM] M2+M22-0 (22)
Figure 1 shows pattern space for the 2-dimensional delay system, with

equiprobable contours forg®= %, 0= 1, ando” = 2.

First order nonlinear system

The second system employed was termed the first order nonlinear

system., The block diagram is shown in Figure 2.

vl—.l,- —( - ¢ S ~ v

Threshold
Device

Figure 2 = First Order Nonlinear System
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The differential equation for the system is

S = -2 SN (x - y)

The solution to this nonlinear differential equation can be found

in closed form by separation of varjables to be

xn -y (nT) s 0‘,‘2:& T . (23)

(T +7) = -
y(nT + ) xn I+’xn-y(nT)/'f

Furthermore, the value of y(nT +T) averaged over the interval 0 £ T < T,

that is, the value of y(t) averaged over the interval nT %t £ (n-1) T, can

also be found in closed form.
]
SGN (x'n = y(nT))

Y Av(n) = Xn - T log (1 + /x'n-y

(24)
The step response of the FONS is given in Figure 3,
integration is

This system was employed because no numerical

required.
Second Qrder Nonlinear System
The third system employed was a second order system with a saturation

The block diagram is given in figure L,

nonlinearity.
Nonlin 1 f—>
s+1

1
f ()

s+1

Figure 4 - Second Order Saturation
System

The nonlinearity employed for studies of the potential function Algorithm

was a saturation, given by:

¥}, uxi
u, =¥ ¢u<¢#
'i'v U\(-i‘

f(u) =
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Simulation Studies

In particular the following problems are considered:

1. Memory considerations: the memory size is determined by the
number of taps on the delay line, the number of quantization'levels for
the output signal, and the maximum number of poles per category (that is,
the maximum number of elements in the reduced category training sets).
Hence, it is necessary to investigate choice of number of quantization
levels and some method of 1imiting the maximum number of poles per level.
It is, in general, assumed that the number of taps and the tap interval
is fixed.

2, Choice of what is termed ''the learning routine'': That is, two
methods of determining the reduced category training sequences were dis-
cussed. These were the Maximum Scheme and the Absolute Scheme. As has
been pointed out, the reduced category training sequences are the poles
of the potential function, and these two criteria, in effect, define two
distinct algorithms for calculating the poles of the potential function.
Accordingly, in the discussion to follow, the term ""Absolute learning
routine' refers to selection of poles according to equation (15), while
the term ''Maximum learning routine' refers to selection of poles accord-
ing to (16).

3. Choice of the potential function, K(x, y): Only one potential
function, referred to as the '"Butterworth Potential Function'' was

employed. It is of the form:

K(X,Y) = s (25)
1+ |UX-¥I| 2-E

Practical considerations

In this section the above problems, as well as several others, are
discussed in further detail and the techniques of simulation are

described.
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Memory Considerations

In a delay line synthesizer, the required number of taps on

the delay line, and the tap interval is given by:

NT =2fm T + 1

i
& 4
T = 2fm

where NT is the number of taps required, and T is the tap interval.

Then the pattern vector will have N_ components,

T

Next suppose the output y(t) were to be quantized into NL levels, As

has been discussed, each quantization level corresponds to a category
subset in pattern space. Finally, suppose that it is determined that
each category subset shall contain no more than Nmax poles. Then it is

clear that the computer storage required is:

n = N_ - N .+ N (26)

P T L MAX

In addition, an NL X NMAX matrix [}x{] is required such that «{ ; =4

K
depending upon whether the kth pole in the ith category is positive or

negative., In a general purpose computer, the matrix [%{] must be stored

in NL . NMAX words; however, if a special purpose computer were built to

realize the algorithm, sinceeok ig is a two-valued number, only NL . NMAx
bits would be required.

it is noted that the number np is a fairly large number, For
= 15, and N

example, if NT =10, N X = 50, then np = 7,500 words,

L MA
which, though not unreasonable, is nevertheless large. The dependence
upon these values, however, is linear, avoiding the problems encountered

by several other schemes.
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The Maximum Number of Poles per Category

The proof of the convergence of the Method of Potential Functions
shows that there exists an upper bound, ko, such that the reduced
training sequence contains not more than ko members, in terms of
properties of the category subsets in linearization space. However,
these properties are not, in general, measurable or calculable a
priori. In short, it is not, in general, possible to determine a
priori how many poles per category will be required; therefore, some
arbitrary limitation must be placed upon computer storage by arbitrarily
selecting N .

Now, choosing N in such a way as to result in

MAX"® MAX
reasonable storage requirements does npot guarantee that the algorithm will have

terminated by the time N X poles are stored, which is to say that the

MA
identification error will not necessarily be acceptably small.

To attempt to get around this problem, clustering techniques were
investigated in the realization of the Algorithm. The techniques of
clustering is based on the analogy of the method of potential functions

to other modal techniques, described in the literature,

Description of Pole Weighting

Briefly, the clustering technique proceeds as follows: suppose the

th !

i reduced category training sequence S A already contains NMAX members,
X i
that is, NMAX poles have already been stored. Then another pole X K

appears where k = N, +1. Then, instead of adding the new pole to the

MAX
S.é , instead, the closest odd pole of the same polarity is found and

replaced with a weighted average of itself and the new pole.
. =i o~ =
That is, suppose X K were the neﬁﬂpole, where k » NMAX, and ik +1,
The S§ would be searched for the pole X '

J
min X - XTI

& Sé such t:hat»tij =“ik and

43



Ai

Then the closest old pole Xj is'rep]aced by the weighted average of

itself and the new pole., Symbolically:

where

w_t+tw =1 (27)
wo and wn are two scalars which are the weights by which the new pole
and the closest old pole are averaged. These weights may be selected

arbitrarily which is termed uniform weighting, or they may be computed

by the algorithm according to some pre-selected rule., The rule employed

in the simulation was so-called center of gravity weighting rule. In this

weighting procedure, the weights are selected so that if a particular pole

is to be modified for the N, ,th time, according to (27), the weights

W

Wo and Wn are set such that

Wo _
wno o N (28)

For the uniform weighting procedure, the weights wo and wn are pre-selected

and remain constant. For the center of gravity (CG) procedure, a N X Nyax

matrix['N‘M (L,NL/ is stored such that Nw (L,N) = 1 initially and is increased
by one each time the Nth pole of the Lth category is weighted according to (27).

Clearly, the C.G. weighting procedure requires more storage and more
computation than does the uniform procedure. Simulation studies suggest
that this added compliexity may not be justified,

Two special cases of the uniform procedure may be noted.

1. Suppose w, = o, w, = 1. Thus, a new pole simply replaces the
nearest old pole. This might be of advantage for nonstationary systems

where the new pole is considered to be an '"update'' of the system.
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Or rather, no averaging is done,

2 . ] = =
Suppose w, 1, W 0.

That is, once a category is '"filled", we assume we are satisfied with it,
and do no further learning. For a stationary system, this results in
minimum computation,

Simulation studies suggest that if NMAX is large enough, weighting

does not increase simulation accuracy. Hence, cases (1) or (2) may as

well be selected, if appropriate,

The Potential Function

The potential function emplioyed referred to as the '‘Butterworth

Potential Function'', was of the form given in (25). Several considerations

led to the selection of a function of this form. First, intuition suggest
that the potential‘function should be a monotone decreasing function of

l] X-Y ll. This is because each positive pole may be thought of as
establishing a '‘mode', and we desire the extent of this mode be 1imited.
The parameters R and E define the extent of influence of the mode defined

by each positive pole. R determines the '"half-width' of the potential

while E determines the steepness.

Furthermore, since the Butterworth Function is of great generality
with respect to the ''shape™ of the potential function in pattern space,

it was therefore the only one employed.

Realization of the Algorithm

Definition of the Discriminant Function

In the Method of Potential Functions (First Algorithm) the discriminant

function in pattern space is defined by the set of positive and negative

poles of the potential function. As has been shown, these poles are

identically the members of the reduced category training sequences.
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i A
S&, i =1,-===,N . Let X 1 be the nth member of SA&. Then‘? b is a
L n x n

L 1
positive pole, denoted by p( n = +1, or Xng is a negative pole, denoted

by"((n = -1,

Then the potential function discriminant is defined as follows:

Let the number of ievels NL and the maximum number of poles per category

NMAX be chosen. Then define an NL X NMAX Vector Matrix P, and an NL X

NMAX scalar matrix A such that the vector P (\,n) is the nth member of
- A
the ith reduced category training sequence, P (},n) = Xt, L=1,----

; + = . .
N ono= 1,=m=m, NMAX’ andeA (], n) € A= =1, Note that P is in reality

a three-dimensional scalar array NT X NL x NMAX' Also define an integer

array Ny Q), § = 1,----,N, such that at each step of the aigorithm, NN(})

L
is the number of poles already in the ﬂth reduced category training
sequence, Then, at each point of the learning phase of the algorithm,

the N, discriminant functions are defined by:

L
Ny (1)
¥, ® - “ (1,n) K (X,F(Q,n).q=1,----,N
» ’ ’ ’ ’ ’ L (29)
n=1
Procedure
Then at the kth step of the algorithm, the pattern X.,& S, is examined

K™ X

according to (15) or (16), and if an error is found, then either

a. |if the appropriate NN(ﬁ) &N the pattern X is added to the

MAX’
array P, the value N{f) is increased by .one, and 6&(’,NN(X)) is set to the
appropriate value; or

b, if Ny 1) = NMAX’ the pattern X is weighted with the closest old
pole of the same polarity, according to (27).

During the learning phase patterns are examined according to either
the Maximum or Absolute learning scheme, and may be added to storage according
to the procedure., Periodically, the algorithm branches to the identification
phase, during which a standard specimen signal is identified. The identi-

fication phase differs from the learning phase in the following respects:
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a. Regardless of the learning routine, identification is
made with a maximum criterion. This is permissible since any
set of categories which is maximally separable is also absolutely
separable. Furthermore, since maximal separability is a weaker
condition, fewer equivocal classifications would be made (that is,
classifications where more than one, or none of the NL discriminant
functions are positive).

b. During the learning phase, the identification error (R M S)
and réliability are measured. Each.time the specimen signal is tested,
the realization returns three quantities: the RMS error of the speci-
men signal, the ratio of correct identifications, and the ratio of
identifications correct to within one quantization interval,

c. During the identification phase, patterns incorrectly
classified are not added to storage.

It is assumed that the Specimen signal is representative of
the learning signal, having the same statistics, but that the specimen

signal is not identical to any segment of the learning signal,

Experimental Results

The purpose of the experiments is two-fold: first to verify
that the method of potential functions is useful as a method of
adaptive simulation of non-linear systems; second to provide some
insight in the choice of parameters.

The parameters of interest are the number quantization levels
of the output, the number of past samples of the input, the maximum
number of poles per category, the pole weighting factors, and the
potential factor parameters R and E. Also of interest is some
comparison between the Maximum and Absolute learning routines.
Finally, these factors are to be examined with respect to the

statistics of the input signal, in the present case p and o (in all
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cases, input of mean value = 0 were used)

Two-Dimensional Delay System

Choice of Learning Algorithm.

Comparison of figures 5 and 8 for the maximum routine with
figures 9 and 10 for the absolute routine indicate that neither is
markedly better than the other, with one reservation: That is, in
figure 9, there is a region computed as category | that is actually
category 4, This would be a more serious error than being mis-
classified as category 3.

Table | indicates that both require a comparable number of
poles. The differences between the two may be 1) that the maximum
routine is somwhat more accurate than the absolute one; 2) that the
absolute routine may require a somewhat longer learning time, or 3)
fortuitous. In any case, the difference is not marked.

Effect of Radius R.

Comparison of the cases for R = 1 and R = 4 indicates that the
radius parameter is indeed an extremely important one, Note that in
comparing figures 5 with 7, and, figures 9 with 10, that the larger
radius results in a higher pole density. This is the reverse of what
would be true for other modal schemes. Note that in the region of
interest, accuracy is worse for the larger R.

This is explained by the fact that the region of influence of
a pole is larger for larger radius. Hence poles, in effect, ''swamp'!
each other out. It appears that the radius should be chosen so that
the pole does not extend its influence too far beyond the boundaries

of its own region.

48



Convergence.

Only the boundaries, not the actual pole locations, are shown
in figures 6 and 8, the piots for 200 passes. For R = |, comparison
of 5 and 6 indicate that the boundaries are converging nicely. Note
table 1 indicates that 27 poles were stored in the first hundred passes,
while only 12 were stored in the second hundrea. The boundaries in
the region of interest are clearly better for 200 passes.

Not nearly as good is the case for R=l. There appears to be
some convergence, since here 37 poles were added in the first hundred
passes, while only 20 in the second hundred. However, the bOundaries-
are not appreciably better. Furthermore, note that in figure 8, the
computedé - A boundary has moved in toward the high probability
region; many low probability points would be required to get it back
out again.

Conclusions

The above results can be summarized as a tentative evaluation
of the effects of these factors upon the algorithm,

Learning routine: not markedly important. Maximum routine

perhaps slightly better.

Input Statistics: allowing for the fact that smaller @*results

in a smaller region of interest, the algorithm seems to handle all
cases equally as well.
Convergence: satisfactory, for proper choice of parameters.
Radius: extremely important. Should be chosen to be smaller than
the “'size' of the category set.

More Complicated Systems

Learning Routine

There seems to be no systematic relationship between wo and
simulation accuracy. The C.G. scheme seems to have no clear advantage
over the uniform scheme.
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One reservatio be indicated.
ion may be indicate These results are for NMAX = 50.

The upward trend of the curves after saturation has been reached may
indicate that the algorithm has done as well as it can for that form,

It is therefore concluded that there is no marked advantage of
one over the other. Fewer calculations may be required for the maximum
routine, while on the other hand, this routine requires a maximum
selector, while the absolute routine may be realized with TLU's.

It is assumed that in a specific problem, these and related considera-
tions could be made the criterion of which to select.

Conclusions

In the study of the two~dimensional delay system, it was
surmiSed that the radiug factor R must be chosen to be smaller than
the smallest ''size' of a category set; and that choosing R larger
than this size will degrade estimation, whereas choosing it smaller
will not appreciably impraove it, This seems to be supported by the
data of the more complicated systems. We note also, that the large
variance of the input, the less sensitive is the accuracy to R.
Presumably this is because larger variance results in a probability
of errors being corrected.

The steepness E is also a factor to be considered. Presumably,
for R sufficiently small, E would not be an important parameter,
whereas larger R may be partially compensated by large E, i.e,,
steeper decrease of K(X Y) with ll x=y l'.

The Effect of NMAX

Figures 11 and 12 indicate the effects of increasing the maximum

number of poles per category, N Clearly, 30, 40 and 50 poles

MAX '
provide better accuracy than 20 poles, but 50 poles does not represent
a marked improvement over NMAx = 40 poles. Learning curves are pre-

sented in figure 11, and RMSE is plotted against NMAX in 12,
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R =S

It is assumed that increasing N will ultimately reduce the

MAX
error; however, it is seen that the rate of reduction tends to decrease.
The error due to averaging and quantizing, denoted by RMSAQ, is indicated
on figure 11. This is a lower bound on identification error, since even
if the identifier were to classify patterns correctly 100% of the time,

the error would still be equal to RMSAQ.

Effect of Fine Quantization

Results

The second order system, test signal 6, was used to measure the
effect of fine and coafse quantization on the algorithm's ability to
simulate the system. For reference the minimum error due to averaging
and quantization are repeated here from table 2.

Parameter values were:

V4 = 0.5

o = 0.5
NMAX = 50
NTAP = 10
R = 1.0
E = 2.0

The absolute learning routine, CG weighting was employed.

The values of RMSAQ from table 2 for deck 6 were as follows:

N RHSAQ

5 .104g
15 L0474
25 .0339
35 .0319

The corrected RMS Error was arbitrarily defined as:

RMSE =~ RMSAQ,
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that is, how close the actual RMSE came to the lower bound. Learning
curves for 5, 15, 25, and 35 levels, plotting corrected RMS error is
shown in figure 13. Note that the corrected RMSE increases rather
than decreases for increasing NL. Uncorrected data are not presented,
but can easily be inferred from figure 13 and the above table. The
face is, that in all cases, the uncorrected curves were close together,

This result is not as surprising as it might first appear.
Figure 14 gives data on the ratio of correct classifications for the
several values of NL. That is, the ratio of correct estimate is that
fraction of patterns presented by the test deck that were correctly
classified. Clearly, the fewer levels there are, the more reliable
will be the estimation.

One reservation must be noted., As the number of levels is
increased, the extent of each category set is decreased. Hence, the
radius factor R should be decreased accordingly. The curves of
figures 13 and 14 were all for R = 1, which is probably far from
optimum for 25 and 35 levels. More studies of this point would
probably be helpful.

Conclusions

The main conclusion is that it is by no means clear that iden-
tification error can be reduced by simply increasing the fineness
of quantization. This is probably true in general for the method
of potential functions, as well as for most other modal learning
techniques. Furthermore, a similar mechanism may be present in other
types of learning algorithms as well.

Probably, the complication introduced by finer quantization
can be mitigated by optimizing the Radius and Steepness factors;

however, it is not clear that this will provide the whole answer.
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Conclusions

The Experimental Results

The results indicate that the most important parameters of the
algorithm are the radius and steepness factors R and E, the number of
quantization levles NL, and the maximum number of poles per category

NMAX' The last two are important also in that they determine the

amount of storage required for realizing the algorithm. These 4
factors are furthermore closely related. For example, increasing NL
probably requires a change in R and E. It is noted that increasing

NL is probably a less effective means of improving accuracy than is

increasing NMAX.

The results indicate that a choice of the absolute or maximum
Jearning routine is not important to the accuracy or the storage re-
quirements, nor is choice of a pole weighting scheme. Hence, these
may be chosen to satisfy other criteria, such as hardware simplicity.

Choice of Tap interval, and settling time are important, but
are properties of the system, rather than of the algorithm.

Designing a Potential Function Simulator for a Given System.

In light of the above, the important steps in designing an

adaptive simulator employing the potential function algorithm are as

follows:

1. NL is chosen as the smallest number such that the quantization

error is satisfactorily small. Discussions of Max (9) and of Widrow (13),

(14) might provide a criterion.

2. The number of taps and the settling time is chosen according

to what knowledge about the input is available.

3. R and E are chosen. R should be small enough as discussed

above, and in general is a function of NL' A first approximation
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might be as follows:
The ''volume'' of a hypersphere in d-dimensional space is given

by (7).

2 g4 d/2

V== (i/2d)

Hence, if it is known that the volume of sample space, as
determined by the variance of the input is V{ then R is chosen such

that

in other words, to a first approximation, it is assumed that each
category subset occupies an equal volume in pattern space,

4, NMAX is chosen to be the largest number for feasible memory
requirements.

5. The other parameters are chosen to suit whatever criteria

are appropriate.

Suggestions for Further Research

Two topics might be appropriate for further study. The relation-
ship between R and NL might be investigated, and the effect upon iden-

tification of increasing N, while optimizing R. Ajso investigations

L

of pole weighting for smaller values of NMAX may be of interest.
Finally, it is noted that the algorithm described here is the

basic algorithm, presented in the first paper of Aizerman et al. The

two subsequent papers discuss several variations, including a probablistic

technique which should be highly appropriate for adaptive simulation.
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FIGURE 5 - Two-Dimensional Delay System

R
1
M

1.0

1.0

00 Patterns
aximum Routine



8¢

M1

FI1GURE 6 - Two-Dimensional Delay System
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FIGURE 7 - Two-Dimensional Delay System
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FIGURE 8 - Two-Dimensional Delay System
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FIGURE 9 - Two-Dimensional Delay System
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Corrected RMS Error of Test Signal
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